Self-learning Mobile Robot Navigation in Unknown Environment Using Evolutionary Learning
نویسندگان
چکیده
An autonomous mobile robot operating in an unstructured environment must be able to learn with dynamic changes to that environment. Learning navigation and control of mobile robot in an unstructured environment is one of the most challenging problems. Fuzzy logic control is a useful tool in the field of navigation of mobile robot. In this research, we optimized a performance of fuzzy logic controller by evolutionary learning technique. Two proposed approaches have been designed and implemented: Fuzzy Logic Controller (FLC) and GeneticFuzzy Controller (GA-FLC). The Genetic Algorithm is used for automatically learning to tune the membership function parameters for mobile robot motion control. Moreover, the performance of these approaches are compared through simulation.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملEvaluating cognitive maps for mobile robot navigation behaviour
This paper examines biologically inspired cognitive map models, which provide an artificial navigating agent with a topological map of places after an exploration and learning phase in a previously unknown environment. The evaluation requires analytical methods that either rate the cognitive map on the basis of the map’s features, or that rate the observed behaviour of the navigating agent. Som...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. UCS
دوره 20 شماره
صفحات -
تاریخ انتشار 2014